Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470227

RESUMO

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Assuntos
Encéfalo , Hidantoínas , Humanos , Oligodendroglia/metabolismo , Desenho de Fármacos , Hidantoínas/metabolismo
2.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32246942

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Assuntos
Comunicação Celular/genética , Doença/genética , Oligodendroglia/metabolismo , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/fisiologia , Fatores de Risco
3.
Front Neurosci ; 13: 829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440130

RESUMO

Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural progenitor cells in the embryonic ganglionic eminences that also generate inhibitory neurons. They are ubiquitously distributed in the central nervous system, remain proliferative through life, and generate oligodendrocytes in both gray and white matter. OPCs exhibit some lineage plasticity, and attempts have been made to reprogram them into neurons, with varying degrees of success. However, little is known about how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and whether OPCs have a unique chromatin environment around neuronal genes that might contribute to their lineage plasticity. Our bioinformatic analysis of histone posttranslational modifications at interneuron genes in OPCs revealed that OPCs had significantly fewer bivalent and repressive histone marks at interneuron genes compared to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of active histone modifications at bivalently marked interneuron genes than other cell types, and this was correlated with higher expression levels of these genes in OPCs. Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other cell types lacked the histone posttranslational modifications examined. These genes had a moderately high level of expression, suggesting that the "no mark" interneuron genes could be in a transcriptionally "poised" or "transitional" state. Thus, our findings suggest that OPCs have a unique histone code at their interneuron genes that may obviate the need for erasure of repressive marks during their fate switch to inhibitory neurons.

4.
Glia ; 66(12): 2684-2699, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30306660

RESUMO

NG2 is a type 1 integral membrane glycoprotein encoded by the Cspg4 gene. It is expressed on glial progenitor cells known as NG2 glial cells or oligodendrocyte precursor cells that exist widely throughout the developing and mature central nervous system and vascular mural cells but not on mature oligodendrocytes, astrocytes, microglia, neurons, or neural stem cells. Hence NG2 is widely used as a marker for NG2 glia in the rodent and human. The regulatory elements of the mouse Cspg4 gene and its flanking sequences have been used successfully to target reporter and Cre recombinase to NG2 glia in transgenic mice when used in a large 200 kb bacterial artificial chromosome cassette containing the 38 kb Cspg4 gene in the center. Despite the tightly regulated cell type- and stage-specific expression of NG2 in the brain and spinal cord, the mechanisms that regulate its transcription have remained unknown. Here, we describe a 1.45 kb intronic enhancer of the mouse Cspg4 gene that directed transcription of EGFP reporter to NG2 glia but not to pericytes in vitro and in transgenic mice. The 1.45 kb enhancer contained binding sites for SoxE and basic helix-loop-helix transcription factors, and its enhancer activity was augmented cooperatively by these factors, whose respective binding elements were found in close proximity to each other. Mutations in these binding elements abrogated the enhancer activity when tested in the postnatal mouse brain.


Assuntos
Antígenos/genética , Antígenos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neuroglia/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação/genética , Encéfalo/citologia , Imunoprecipitação da Cromatina , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Mutação/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transfecção
5.
Stem Cell Reports ; 11(3): 711-726, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146490

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a fatal X-linked disorder caused by loss of myelinating oligodendrocytes and consequent hypomyelination. The underlying cellular and molecular dysfunctions are not fully defined, but therapeutic enhancement of oligodendrocyte survival could restore functional myelination in patients. Here we generated pure, scalable quantities of induced pluripotent stem cell-derived oligodendrocyte progenitor cells (OPCs) from a severe mouse model of PMD, Plp1jimpy. Temporal phenotypic and transcriptomic studies defined an early pathological window characterized by endoplasmic reticulum (ER) stress and cell death as OPCs exit their progenitor state. High-throughput phenotypic screening identified a compound, Ro 25-6981, which modulates the ER stress response and rescues mutant oligodendrocyte survival in jimpy, in vitro and in vivo, and in human PMD oligocortical spheroids. Surprisingly, increasing oligodendrocyte survival did not restore subsequent myelination, revealing a second pathological phase. Collectively, our work shows that PMD oligodendrocyte loss can be rescued pharmacologically and defines a need for multifactorial intervention to restore myelination.


Assuntos
Células Precursoras de Oligodendrócitos/patologia , Doença de Pelizaeus-Merzbacher/patologia , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Transcriptoma
6.
Nat Methods ; 15(9): 700-706, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30046099

RESUMO

Cerebral organoids provide an accessible system for investigations of cellular composition, interactions, and organization but have lacked oligodendrocytes, the myelinating glia of the central nervous system. Here we reproducibly generated oligodendrocytes and myelin in 'oligocortical spheroids' derived from human pluripotent stem cells. Molecular features consistent with those of maturing oligodendrocytes and early myelin appeared by week 20 in culture, with further maturation and myelin compaction evident by week 30. Promyelinating drugs enhanced the rate and extent of oligodendrocyte generation and myelination, and spheroids generated from human subjects with a genetic myelin disorder recapitulated human disease phenotypes. Oligocortical spheroids provide a versatile platform for studies of myelination of the developing central nervous system and offer new opportunities for disease modeling and therapeutic development.


Assuntos
Córtex Cerebral/citologia , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Esferoides Celulares/citologia , Animais , Diferenciação Celular , Humanos , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/citologia , Esferoides Celulares/metabolismo
7.
Nature ; 560(7718): 372-376, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046109

RESUMO

Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases1-3. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo4-10. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Remielinização , Esteróis/química , Esteróis/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Animais , Colesterol/biossíntese , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Oligodendroglia/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Remielinização/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Esteroide Isomerases/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Especificidade por Substrato
8.
Nature ; 553(7686): 101-105, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258295

RESUMO

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Assuntos
Elementos Facilitadores Genéticos/genética , Ependimoma/tratamento farmacológico , Ependimoma/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Terapia de Alvo Molecular , Oncogenes/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Ependimoma/classificação , Ependimoma/patologia , Feminino , Humanos , Camundongos , Medicina de Precisão , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nature ; 547(7663): 355-359, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28678782

RESUMO

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Terapia de Alvo Molecular/tendências , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Interferência de RNA , Transcrição Gênica , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Hum Genet ; 100(4): 617-634, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366443

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.


Assuntos
Oligodendroglia/patologia , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/patologia , Técnicas de Cultura de Células , Criança , Pré-Escolar , Estresse do Retículo Endoplasmático , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteína Proteolipídica de Mielina , Oligodendroglia/metabolismo
11.
J Clin Invest ; 126(7): 2757-72, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27322055

RESUMO

Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor-initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH.


Assuntos
Neoplasias Encefálicas/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Glioblastoma/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Divisão Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteômica/métodos , Receptores Notch/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
12.
Nature ; 522(7555): 216-20, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25896324

RESUMO

Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.


Assuntos
Clobetasol/farmacologia , Miconazol/farmacologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camadas Germinativas/efeitos dos fármacos , Camadas Germinativas/metabolismo , Camadas Germinativas/patologia , Humanos , Lisofosfatidilcolinas , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Esclerose Múltipla/patologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores de Glucocorticoides/metabolismo , Regeneração/efeitos dos fármacos , Técnicas de Cultura de Tecidos
13.
Cell Stem Cell ; 14(6): 854-63, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24905169

RESUMO

Naive mouse embryonic stem cells (mESCs) and primed epiblast stem cells (mEpiSCs) represent successive snapshots of pluripotency during embryogenesis. Using transcriptomic and epigenomic mapping we show that a small fraction of transcripts are differentially expressed between mESCs and mEpiSCs and that these genes show expected changes in chromatin at their promoters and enhancers. Unexpectedly, the cis-regulatory circuitry of genes that are expressed at identical levels between these cell states also differs dramatically. In mESCs, these genes are associated with dominant proximal enhancers and dormant distal enhancers, which we term seed enhancers. In mEpiSCs, the naive-dominant enhancers are lost, and the seed enhancers take up primary transcriptional control. Seed enhancers have increased sequence conservation and show preferential usage in downstream somatic tissues, often expanding into super enhancers. We propose that seed enhancers ensure proper enhancer utilization and transcriptional fidelity as mammalian cells transition from naive pluripotency to a somatic regulatory program.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Camundongos
14.
Methods Mol Biol ; 1074: 1-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23975801

RESUMO

Mouse epiblast stem cells (EpiSCs) are pluripotent embryonic cells that can be used to interrogate developmental transitions that occur during gastrulation. EpiSCs can also be robustly differentiated into functional somatic and germ cell derivatives making them a useful tool for studying development and regenerative medicine. Typically, mouse EpiSCs are isolated from the early postimplantation epiblast around 5.5 days post coitum (dpc). This chapter describes the methods for isolation of mouse EpiSCs from preimplantation blastocyst-stage mouse embryos (3.5 dpc). This technique enables the routine ability to derive EpiSC lines as it is much less labor intensive than isolation of EpiSCs from the postimplantation epiblast. We also detail relevant assays used to characterize new EpiSC lines and distinguish them from mouse embryonic stem cells.


Assuntos
Blastocisto/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Camadas Germinativas/citologia , Animais , Diferenciação Celular , Linhagem Celular , Gastrulação/genética , Células Germinativas/citologia , Camundongos
15.
Nat Biotechnol ; 31(5): 426-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23584611

RESUMO

Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelin. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.


Assuntos
Fibroblastos/citologia , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Fibroblastos/fisiologia , Melhoramento Genético/métodos , Camundongos , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...